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1. Introduction

The 2004 reauthorization of the Individuals with Disabilities
Education Improvement Act (Public Law 108–446; IDEA) describes
and expresses a subtle preference for a new method of identifying
students with learning disabilities (LD). More specifically, it
encourages use of a child's response to research-based, generally
effective instruction as a formal part of the disability identification
process. This new method is called “Responsiveness-to-Intervention,”
or RTI. Disappointingly, little guidance in the IDEA statute or in
subsequently published regulations has been given to practitioners to
help them proceduralize RTI, in effect permitting them to create their
own ways of doing this. Nevertheless, a multi-tiered RTI model has
been embraced by researchers and practitioners who seem to agree
on its basic components (Fuchs, Mock, Morgan, & Young, 2003;
National Joint Committee on Learning Disabilities, 2005).

These components include theprovisionof research-backed (“core”)
instruction in the regular classroom and the use of a screeningmeasure
to identify studentswhowill likely struggle tomeet normativeacademic
goals by year's end. Students scoring below a certain percentile or
performance benchmark on the screeningmeasure are identified as “at-
risk.” Their academic progress is monitored in the regular classroom,
also referred to as the first tier of instruction, usually for 6–8 weeks.
Those failing to demonstrate appropriate progress are referred to a
second, more intensive instructional tier, where their progress is again
monitored. Following 8 to 20 weeks (depending on the RTI model),
children who continue to struggle are formally identified as non-
responders. At this point in the process, a disability may be suspected
because of an assumption that students should profit from interventions
that haveproveneffective for amajority of their peers. Again, depending
on the RTI model, nonresponders advance to a third andmost intensive
instructional tier in general education or participate in a comprehensive
evaluation to determine if they are disabled and if so whether special
education is appropriate.

1.1. A rush to orthodoxy

We and others believe this multi-tier operationalization of RTI
holds promise for promoting earlier identification of at-risk children,
eliminating poor instruction as the cause of low achievement, and
generating data more relevant to instruction than that produced by
conventional student evaluations (cf. Fuchs & Fuchs, 2006; Vaughn &
Fuchs, 2003; Vellutino et al., 1996). Yet, we also believe that there has
been a rush to make this multi-tier version of RTI the RTI approach.
This premature consensus is unfortunate for several reasons.

A key problem with current thinking about RTI that justifies an
exploration of modifications or alternatives is the rigidity in the
assignment of children to the instructional tiers. Right now, all
students typically move through them in the same way. This uniform
movement is driven by a series of decision points: A student receives 6
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to 8 weeks of general education to determine whether she is “at-risk.”
If so, this is followed by as many as 20 weeks of more intensive
instruction to determine whether she is a “nonresponder.” If so, there
must then be a determination concerning the necessity of a most
intensive level of instruction (Speece, 2005). In this progression from
Tier 1 to Tier 2 and so forth, there seems little opportunity to move a
child from Tier 1 directly to Tier 3. And yet, it is not hard to imagine a
small group of children whose performance is so poor in Tier 1 that to
place them in Tier 2 makes little sense.

Similarly, there will surely be a different group of students whose
placement in Tier 2 proves unnecessary. That is, they are incorrectly
identified in Tier 1 as requiring more intensive instruction and, once in
Tier 2, quickly demonstrate a rate of improvement or level of
performance that argues for their immediate return to the regular
classroom. In short, the inherent inaccuracy in choosing children for the
various tiers seems to argue for flexibility, not rigidity, of movement
among them. Rigidity of movement contributes to unnecessary delay in
placing children in the most appropriate instructional programs.

Although it appears that, according to consensual opinion, RTI
should be defined by amulti-tiered approach, very different RTI models
can be imagined. In this vein, we should be looking for different or
additional methods that may be used to refine the capability of schools
to make more accurate and timely distinctions between students who
need intensive support and thosewhodo not. Our hope is that thework
described in this article—the use of event-related potentials (ERPs) to
predict readinggrowth—will encourage researchers andpractitioners to
expand their thinking aboutwhat RTImay be. Any improvements in the
accuracy and efficiency of RTI should decrease the time students wait to
receive appropriate instruction or are identified for special education,
and increase the likelihood that school resources are used appropriately.
1.2. Cognitive neuroscience and the search for solutions

Weacknowledge that cognitive neurosciencemay strike some in the
field of education as an improbable field in which to search for ways to
improveRTI. However, a number of researchers have demonstrated that
ERPs can be an effective tool for exploring neural correlates of reading
(Maurer & McCandliss, 2007; Molfese et al., 2006; Schlaggar &
McCandliss, 2007) and that children with reading disabilities demon-
strate different ERP responses from typically developing children
(Harter, Anllo-Vento, & Wood, 1989; Molfese, 2000; Penolazzi,
Spironelli, Vio, & Angrilli, 2006). In an attempt to expand current
thinkingaboutRTI,wedecided toexplorewhether ERPs couldbeused in
a practical sense to provide information that may be used to predict
short-term reading change. We hope such thinking may be properly
seen as heuristic. Before suggesting how cognitive neurosciencemay be
applied to RTI, we briefly discuss it in general terms.

Examining brain processes associatedwith specific behaviors can be
very informative by illuminating differences thatmay be not easily seen
using traditional behavioral assessments (Ward, 2006). ERPs offer one
means of examining reading-related brain processes in children and
adults. ERP is a measure of electrical brain activity associated with a
stimulus event (Andreassi, 2000; Lyytinen et al., 2005;Molfese,Molfese,
& Espy, 1999). ERPs are represented as complex waveforms of positive
and negative deflections that vary in magnitude (amplitude) and
temporal features (latencies), and are thought to reflect extent and
speed of information processing (Kutas & Federmeier, 1998; Lyytinen et
al., 2005; Molfese et al., 1999). One of the main benefits of ERP is their
high temporal resolution that allows neural changes to be documented
at the millisecond level, at the same rate that reading processes occur
(Barber & Kutas, 2007;Molfese,Molfese, & Pratt, 2007). From a practical
standpoint, ERPs may be the most feasible imaging technique for use in
schools in the future because it is less invasive, less expensive, and
requires less specialized laboratory settings than other imaging
techniques (Andreassi, 2000).
ERP studies of reading have demonstrated differential patterns of
brain behavior for readers of differing reading abilities. For example,
Molfese et al. (2006) reported that above-average readers evaluated
phonological properties of printed words and nonwords more quickly
than the average and below-average readers within 160–400 ms after
stimulus onset. Above-average readers also demonstrated higher left-
hemisphere amplitudes, whereas average and below-average readers
demonstrated higher right-hemisphere amplitudes. Less hemispheric
differentiation was associated with weaker reading skills. Hemispheric
differences between dyslexic and non-dyslexic children were also
reported by Penolazzi et al. (2006) who used a task requiring
comparisonsofwords in termsofphonology, orthography, or semantics.
Non-dyslexic readers demonstrated higher left-hemisphere amplitudes
and greater hemispheric differentiationwhen compared to the dyslexic
readers associated with phonological elaboration and delayed graph-
eme–phoneme conversion processes within 370–470 ms and
700–1500 ms after stimulus onset, respectively.

Additional ERP studies comparing reading-disabled children or
reading-disabled adults to typical controls have also identified proces-
sing deficits that may be contributing to reading difficulties such as
auditory/phonological processes (Molfese, Molfese, & Modgline, 2001;
Lyytinen et al., 2005; Bonte & Blomert, 2004), visual processes (Barnea,
Lamm, Epstein, & Pratt, 1994; Harter, Diering, & Wood, 1988; Lovrich,
Cheng, & Velting, 2003), attentional processes (Bernal et al., 2000;
Jonkman, Licht, Bakker, & Van Den Broek-Sandmann, 1992), and
intermodal timing deficits (Breznitz & Meyler, 2003).

Further, researchers have demonstrated that ERPs can serve as
neuropsychological predictors of later language and reading outcomes
by examining brain activity associated with reading-related processes
such as phonological discrimination. From longitudinal studies, there is
evidence that ERP differences among newborns in response to
phonological stimuli are predictive of the same children's performance
on language tasks at ages 3 and 5, and reading measures at age
8 (Molfese et al., 1999; Molfese et al., 2007; Molfese et al., 2001).
Lyytinen et al. (2005) identified differential hemispheric processing
between children at-risk for dyslexia and non-risk peers. At-risk infants
exhibited right-hemisphere dominance and non-risk children exhibited
left-hemisphere dominance for processing auditory information. These
differential patterns of ERP response were significantly correlated with
poorer receptive language skills at age 2.5, poorer verbal memory skills
at age 5, and lower scores on measures of word and nonword reading
and reading fluency during the first year of school.

Overall, studies including both reading tasks and tasks requiring
the use of reading-related language processes have shown that ERP
can provide information about reading processes above and beyond
information from behavioral measures (e.g., Molfese et al., 2006), and
that readers with differing skill levels exhibit distinct patterns of brain
responses (see Lyytinen et al., 2005 for a review). Researchers have
also used ERP to make long-term predictions of language and reading
skill (e.g., Molfese et al., 2001). However, the use of ERP responses,
particularly those collected during reading tasks, to make short-term
predictions of reading change and to index responsiveness to
academic instruction has not been examined. Additionally, many of
the existing ERP studies of reading used well-known ERP tasks that
were not designed to target specific reading processes. Examples are
the use of “oddball tasks” targeting attentional processes needed for
detection of a rare stimulus among frequent distracters (Holcomb,
Ackerman, & Dykman, 1986; Bernal et al., 2000), “priming” paradigms
where paired stimuli are presented sequentially and properties of the
earlier stimulus may be relevant to processing of the later one
(McPherson, Ackerman, Oglesby, & Dykman, 1996), and “stop tasks”
assessing the executive functioning ability to inhibit an otherwise
appropriate response when such a request is unexpectedly presented
shortly after the stimulus offset (van der Schoot, Licht, Horsley, &
Sergeant, 2002). Attempting to adapt such tasks to assess reading
processes could inadvertently lead us to examine latencies and scalp



Table 1
Behavioral measures by reading subgroup.

Measure Low (n=10) Average (n=10) High (n=9)

M (SD) M (SD) M (SD)

RLN 36.30 (15.35) 41.50 (10.47) 60.78 (15.38)
Segmentation 22.60 (7.78) 24.50 (8.66) 26.00 (3.64)
Time 1 CBM 6.35 (4.67) 14.95 (6.13) 36.39 (12.35)
Time 2 CBM 11.70 (7.00) 29.80 (6.08) 65.00 (12.77)
CBM Change 5.35 (3.32) 14.85 (2.59) 28.61 (12.59)

Note. RLN = Rapid Letter Naming. CBM = Curriculum-Based Measurement.
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regions that reflect more global processes such as attention,
disinhibition or expectancy rather than more reading-specific
processes (e.g., letter to sound conversion).

1.3. Purpose of study

The purpose of the current study was to explore the utility of ERPs
to predict academic growth in reading during a single school year in a
group of beginning readers. The young age of the children required
the use of ERP tasks that would target beginning reading skills. While
previous ERP studies have included various tasks exploring reading
processes in adults and more experienced readers, limited work has
been done with struggling, beginning readers. Therefore, we chose to
use a set of ERP tasks that were variants of existing tasks which would
tap the same early reading skills (i.e., letter–sound association, simple
nonword decoding, rhyming) measured by previously validated
behavioral measures, and that would presumably require similar
processes to those exercised by children during literacy instruction in
kindergarten and first grade.

Another consideration in our task design process was to keep the
tasks relatively brief to ensure participants' optimal attention levels and
minimal fatigue. Given thenovelty of twoof the tasks, and theyoung age
and wide range of reading ability in the sample, our approach was
conceptually exploratory. That is, we could not predict beforehand
where on the scalporwhenon thebrainwave theERPvariable(s)would
predict reading gain. However, we have used a disciplined statistical
approach (i.e., omnibus tests to guide subsequent detailed analyses and
an adjusted alpha for multiple significance testing) to reduce the
probability of detecting sample-specific results.

Wehypothesized that (1) these taskswouldelicit ERP responses that
vary by the children's reading skill and (2) the ERP responses would
predict short-term reading growth after controlling for reading
performance on relevant behavioral measures. Our hope was that this
study would add to previous research in several related ways. First, to
use ERPs to predict reading performance during a relatively brief
interval, using ecologically valid reading tasks suitable for beginning
readers; second, to demonstrate a practical application of ERP as a
possible supplemental or alternative method of indexing student
reading gain during instruction. Finally, this study was designed as
heuristic and to encourage others to think creatively about alternatives
when evaluating student responsiveness—alternatives that may even-
tually improve the efficiency and accuracy of current RTI approaches. At
a more general level, we hoped to provide additional evidence that
techniques borrowed from cognitive neuroscience can produce rich,
unique, and important information as part of educational research.

2. Method

2.1. Participants

Study participants were 29 children (16 females), between the ages
of 6 and 8 years (M=6.92, SD=.43). They were a volunteer sample
recruited from 105 first-grade students participating in a larger study
aimed at exploring the predictive utility of a dynamic assessment
measure (Fuchs, et al., 2007). Students attended 4 elementary schools
(two of which were high-poverty Title I) in the Metropolitan Nashville
Public Schools. Seventeen students (58.6%) were African American, 10
(34.5%) were Caucasian, 1 (3.5%) was Hispanic, and 1 (3.5%) was Asian;
17 (58.6%) received free or reduced lunch; 3 (10.3%) had previously
been retained; and 3 (10.3%) had Individualized Education Plans (IEPs).
Of the three children with IEPs, one had a learning disability, one a
speech impairment, and one both a learning disability and a speech
impairment. All but one participant were right-handed (M LQ=.73,
SD=.34) as determined by Edinburgh Handedness Inventory (Oldfield,
1971). No child was reported by his or her parent to have hearing loss.
All were native English speakers. Parents of all the children provided
written informed consent and oral assentwas obtained from each child.
2.2. Behavioral procedure

Students participating in the larger study completed a battery of
reading assessments. This batterywas administered by trained graduate
students at the end of the fall semester and again 19 weeks later
(M=18.80 wks, SD=.34).
2.2.1. Behavioral predictors
Two measures administered in the larger study were used as

predictors of reading change in this study. Both index skills predictive
of early reading growth in first grade (O'Connor & Jenkins, 1999).
Students' scores by reading subgroup are displayed in Table 1 (see
Section 2.5.3 for additional information on the formation of the
subgroups). The Rapid Letter Naming (RLN) subtest adapted from the
Comprehensive Test of Phonological Processing (CTOPP) was admin-
istered to measure the speed with which students could name letters
(Wagner, Torgesen, & Rashotte, 1999). Each form consists of 7 rows of
letters, with 7 or 8 letters in each row. The letters (a, c, k, n, s, and t)
are arranged in random order on each form. The student is asked to
name the letters on each page as quickly as possible. If a response is
not offered in 3 s, the examiner names the letter and tells the student
to move to the next letter. The examiner records the number of letters
named correctly in 60 s. The test–retest reliability coefficient for the
RLN subtest of the CTOPP is .97 for students 5 to 7 years.

A test of students' word Segmentation skills was adapted from the
word segmentation subtest of the CTOPP (Wagner, et al., 1999). The
test begins with 3 practice items. If the student responds incorrectly to
all items, the test is discontinued. If the student responds correctly to
at least 1 item, the test is administered until the student misses 4 in
succession. The test consists of 22 test items. The score is the total
number of sounds segmented correctly in 1minute. This subtest of the
CTOPP has a test–retest reliability of .79 for children between the ages
of 8 and 17 in the normative population.
2.2.2. Behavioral outcome
Because the purpose of this study was to determine if ERP could be

used to predict reading change over a relatively brief time, curricu-
lum-based measurement (CBM) word identification fluency lists were
used to measure reading skill. Previous work indicates this measure is
a reliable and robust indicator of first-grade reading level and growth
(Deno, Mirkin, & Chiang, 1982; Fuchs, Fuchs, & Compton, 2004).
Reading change was operationalized as the difference between scores
at Time 1 and Time 2. At each time point, the examiner presents two
lists of 50 words randomly sampled from high-frequency word lists.
The examiner begins with a practice list of 6 words. The student's
score is the average number of words read correctly in 1 min on the
two lists. Scores are prorated if a student completes reading the list in
less than 1 min. Students' scores by reading subgroup are displayed in
Table 1.
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2.3. ERP procedure

A high-density array of 128 Ag/AgCl electrodes embedded in soft
sponges (EGI, Inc., Eugene, OR) was used to record the ERPs. During
data collection, all electrodes were referenced to Cz (vertex) and then
were re-referenced offline to an average reference. Electrode
impedance levels were at or below 40 kΩ (checked before and after
testing). The data were sampled at 250 Hz with filters set to .1–30 Hz.

ERPs were recorded at the university ERP lab within 7 weeks
(M=6.56 wks, SD=2.31) of each behavioral assessment battery.
ERPs were collected twice for each child with Time 1 and Time 2
sessions separated by 14 weeks (M=14.69, SD=.91). ERPs were
obtained using three measures meant to assess different reading
processes: (a) letter sound knowledge, (b) the rhyming of nonsense
words, and (c) the decoding of simple nonsense words. The order of
presentation of the tasks was fixed across students, starting with the
one presumed most easy (Letter Sound Matching) and progressing to
the one expected to be most difficult (Nonword Reading). Recording
of brainwaves was controlled by Net Station software (v. 4.1; EGI,
Inc.). Stimulus presentation was controlled by E-Prime (PST, Inc.,
Pittsburgh, PA). During the entire test session, the participant's EEG
and behaviorwere continuouslymonitored and stimulus presentation
was suspended during periods of inattention or motor activity.

2.4. ERP tasks

To ensure that children were paying attention and engaging in
targeted reading processes, all tasks required participants to evaluate
pairs of stimuli (e.g., a printed letter and a spoken sound) and to
indicate whether the two were the same or different by pressing
buttons on a hand-held response pad. Button assignment to response
type was counterbalanced across children. Children were allowed to
respond after the second stimulus in a pair as soon as they knew the
answer.

Furthermore, because many young children have limited attention
spans, we chose to use an equiprobable stimulus presentation where
same and different stimulus pairs were presented an equal number of
times. The rationale for this choice is that oddball designs necessitate a
large number of trials to achieve the desired balance between rare
target and frequent distracter trials and thus result in a lengthy
recording session. Increasing the duration of the recording increases
the likelihood of participant attrition due to fatigue, increased noise in
ERPs (e.g., movement and eye artifacts), and loss of focus on the task.
Also, proper analysis of an oddball design would require discarding a
large number of standard trials to equate the number of trials going
into averages for the standard and target conditions to prevent
averages from being based on largely uneven trial numbers which
could bias the findings toward larger amplitudes being observed for
the smaller trial count average (Thomas, Grice, Najm-Briscoe, &Miller,
2004). Equiprobable designs require shorter recording sessions and
all recorded data are used for data analysis. Furthermore, in a pilot
study in our lab comparing the utility equiprobable and oddball
designs for detecting speech sound discrimination, we found the
equiprobable design to be no less efficient than an oddball design.

Brief practice sessions were provided for each task. A researcher
monitored children's compliance with instructions during the
recording session. For the three tasks, auditory stimuli were presented
through a speaker positioned above the child's head, at the level of
75 dB SPL(A) as measured at the ear level. Visual stimuli were
presented on a 17″ monitor positioned 3′ in front of the child.

2.4.1. Letter Sound Matching
Stimuli included 7 printed lower-case letters (t, k, n, d, p, g, j) and

their corresponding sounds recorded by a male native English
speaker. The letters were presented in Century Gothic font (size 96)
and their on-screen size was 1″wide by 1 to 1.5″ tall. Each trial began
with a 500 ms fixation point (a plus sign) in the center of the screen,
followed by a 2000 ms presentation of the printed letter and then a
spoken letter sound. On same trials, a printed letter was followed by
the correct letter sound. On different trials, a wrong letter sound (with
three alternatives used for each letter) was presented following the
letter. Participants were asked to press one button if the spoken letter
sound matched the printed letter and another if the two did not
match. The intertrial interval varied randomly between 1500 and
2500 ms to prevent habituation. There were 84 trials.

2.4.2. Nonword rhyming
Stimuli included 60 pairs of spoken nonwords (selected from the

list previously used by Coch, Grossi, Skendzel, & Neville, 2005), where
30 pairs rhymed and 30 did not. Each nonword was included in one
rhyming and one non-rhyming pair, and each pair was presented only
once during the task resulting in 60 trials. All stimuli were recorded
using a male native English speaker. Each trial began with a 500 ms
fixation point (a centered plus sign), followed by auditory presenta-
tion of the first and second words of a pair. To assist participants'
tracking of whichwords were to be checked for rhyming, numbers “1”
and “2” were visually presented 250 ms prior to the onset of each
spoken nonword. Participants were instructed to press one button if
the two words rhymed and another if the words did not rhyme after
they heard the second word. The intertrial interval varied randomly
between 1500 and 2500 ms.

2.4.3. Nonword reading
Stimuli included 10 CVC nonwords printed in lower-case (Century

Gothic, size 96). Ten spoken nonwords were the same as the CVC
nonwords; 10 spoken nonwords differed from the CVC nonwords in
the last sound, and an additional 10 spoken nonwords differed from
the CVC nonwords in the first sound. Spoken nonwords were recorded
by a male native English speaker. Each trial began with a 500 ms
fixation point (a centered plus sign). The fixation was replaced by the
printed CVC nonword for 2250 ms. The on-screen size of nonwords
was 2″ to 3″ wide x 1″ to 1.5″ tall. The angle for the visual stimuli was
3.3–4.9° wide by 1.63–2.45° high. On same trials, the printed nonword
was followed by the correct spoken nonword (e.g., ‘mip’ and ‘mip’).
On different trials, the spoken nonword differed in the first or last
sound (e.g., ‘mip’ paired with ‘fip’ or ‘min’). Participants were asked to
press one button if the spoken word matched the printed word and
another if the two did not match. Intertrial interval varied randomly
between 1500 and 2500 ms to prevent habituation. The task included
80 trials.

2.5. ERP data analysis

2.5.1. Artifact removal
For each of the three tasks, individual ERPs were derived by

segmenting the ongoing EEG on auditory stimulus onset to include a
100 ms pre-stimulus baseline and a 600 ms post-stimulus interval. For
the Letter Sound Matching task, the trials were segmented on auditory
stimulus onset; segments for the other two tasks (i.e., Nonword
Rhyming and Nonword Reading) were time-locked to the onset of the
second stimulus in a pair. The 600 mswindowwas expected to capture
all of stimulus-related brain activity in children; the window was
100-ms longer than the 500 ms window used in previous work due to
the diverse reading ability of our sample (e.g. Coch et al., 2005). Trials
with eye and movement artifacts were rejected. Data from electrodes
with poor signal quality were replaced using spherical spline interpo-
lation procedures (Srinivasan, Nunez, Tucker, Silberstein, & Cadusch,
1996). Averaged data for each condition were re-referenced to an
average reference and baseline-corrected by subtracting the average
microvolt value across the 100 ms pre-stimulus interval from the post-
stimulus segment. For a data set to be included in the remaining
analyses, each stimulus condition had to include aminimum of 10 good
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trials. Although this criterion may appear low to some, previous ERP
studies with young children demonstrated that 10–15 trials are
sufficient to obtain reliable data (e.g., Taylor & Keenan, 1990). Young
children can tire and lose interest in a task very quickly, leading to
increased movement artifacts and decreased performance due to
inattention rather than poor skills. Balancing task length with an
optimal number of trials is necessary for any ERP study with children.

Because we used novel tasks with children younger than those
typically included in ERP studies of reading problems, statistical
analyses, by necessity, had to be exploratory as no a priori predictions
regarding a temporal window or scalp location of group differences
could reasonably be made. Therefore, we chose to implement a
disciplined analytical approach to reduce experiment-wise error.

2.5.2. Data reduction
ERP variables are specified in terms of scalp location and time

samples. As a result, ERP tasks generate very large data sets. Without
data reduction, there would be 2 conditions×124 electrodes (4 lower
eye channels were not included in the analysis)×150 time samples
(600 ms interval sampled every 4 ms), or 14,880 variables per person.
Because we did not have peak-specific predictions, using a traditional
ERP analysis approach (e.g., peak amplitude/latency measures) was
not feasible. It would result in an extremely large number of statistical
tests. Therefore, to derive the maximum benefit of this rich data set
without arbitrarily selecting just a few data points and discarding the
rest, we implemented a spatio-temporal analysis initially described by
Spencer, Dien, and Donchin (1999). Specifically, we first reduced the
number of electrodes by using spatial principal components analysis
(sPCA) with Varimax rotation (using SPSS v.13 package) to identify
“virtual electrodes,” or clusters of spatially contiguous electrodes that
detect highly inter-correlated data. Amplitude values from electrodes
within each cluster were averaged and served as input for the
temporal principal components analysis (tPCA)with Varimax rotation
aimed at reducing 150 individual time samples to a smaller number of
time intervals. The refined factor scores from the tPCA served as ERP
variables for further analyses. The PCA analysis approach, including
the spatio-temporal method described here, has been widely used in
the ERP community for the purposes of data reduction, exploration,
and description (Dien & Frishkoff, 2005; Donchin, 1966; van Boxtel,
1998; Kayser & Tenke, 2005).

Both sPCA and tPCA procedures included data from the same and
different conditions to provide important contrasting information in
order to make the same condition ERP variables more interpretable.
Additionally, although our research questions focused on the
predictive utility of Time 1 ERPs, data from the Time 2 ERPs were
included in the PCA analyses to provide a single data reduction
method for the entire ERP data set. As structural changeswould not be
expected between the time points, the topographical distributions
were anticipated to remain stable over time. Thus, including Time 2
ERPs permitted a more reliable estimate of spatial clusters and
allowed for an assessment of the stability of the ERP variables
correlated with change in reading.

2.5.3. Statistical analysis
Following spatial and temporal data reduction, a series of repeated

measures analyses of variance (ANOVA;SPSSv.13)wereused to identify
which ERP variables (defined by their temporal range and electrode
cluster) at Time 1 were most likely to index psycho-physiological
processes related to reading. This analytic method required the reading
measure to be a categorical variable, and to be entered in the same
analysis with the electrode cluster and condition variables. To achieve
this, all participants were divided into three reading subgroups (low,
average, and high readers; n=10,10, and 9, respectively) as defined by
the mean,−.5 SD and+.5 SD on the Time 2 CBM reading test. Children
with IEPs were included in the low (n=2) and average (n=1)
subgroups. Statistically significant differences were found between the
groups for RLN (pb .01) and all CBM measures (pb .001), but not for
Segmentation (p=.59) or age (p=.41). This admittedly arbitrary
division resulted in loss of information about individual differences in
reading, but provided a conservative test of whether ERP variables were
related to reading while providing protection against experiment-wise
error.

Next, the repeatedmeasures ANOVAs, which included data from the
same and different conditions, permitted exploration of the possible
presence of any reliable reading group×electrode cluster×condition
effects (using an adjusted alpha of .01). These analyses helped identify
time periods relevant to indexing a process that varied by reading skill.
Main effectswere not evaluated followingnonsignificant interactions as
our purposewas to identify ERP responses predictive of reading change.
In the case of a significant interaction, a one-way ANOVA with reading
group as the between-subject factor and condition difference (differ-
ent–same) as the dependent variable helped identify the cluster at
which ERP responses to condition contrast differed as a function of
reading skill. The correlations between these ERP responses and reading
change (i.e., the CBMdifference score betweenTimes 1 and2)were next
examined to test our hypothesis that the ERP responses would predict
short-term reading change. In cases where the selected ERP variable(s)
were statistically significantly correlated with reading change, we
examined the predictive utility of ERP by using regression with reading
change as the criterion (dependent) variable and the Time 1 ERP as the
predictor variable while controlling for Time 1 accuracy of behavioral
responding during the selected ERP task.

3. Results

3.1. Behavioral performance

To interpret ERP response as an index of the cognitive processes
involved in a specified task, and to legitimately use brainwaves as
predictors of future outcomes, we must have confidence that partici-
pants were indeed performing the designated task (e.g., comparing
visually presented and spoken stimuli). One obvious way to verify that
participantswerediscriminating same fromdifferent stimuli is to look at
the accuracy of their responses. In otherwords, because ERPs associated
with incorrect responses may reflect processes in addition to or instead
of those targeted by the task (e.g., inattention), onemay choose to focus
ERP analyses on trials with only correct responses. This solution,
however, is problematic with young children as participants because it
is often difficult to obtain from them an adequate number of correct,
artifact-free responses when using a task targeting a developing skill
and keeping the testing session relatively brief. Hence, we analyzed all
ERP data regardless of the accuracy of children's responses, thereby
providing a conservative test of our hypotheses.

Variation in accuracy of performance (i.e., the proportion of correct
button presses) at Time 1 and Time 2 was examined with hierarchical
linear regression (see Table 2). Results indicate that accuracy did not
varyby type (e.g., samevs. different, t(304)=−0.84,p=.40); however,
statistically significant differences were found across tasks (t(304)=
−3.36, p=.001)) and time (t(304)=3.08, p=.003)). Follow up
analyses indicated higher levels of accuracy on Letter Sound Matching
compared to Nonword Reading (p=.001) and Nonword Rhyming
(p=.005) with no differences between Nonword Reading and
Nonword Rhyming (p=70). Overall, students were more accurate on
all tasks at Time 2 (p=.003). Due to a statistically significant interaction
of group with task (p=.000), follow up one-way analyses of variance
were conducted to examine differences between the groups for each
task at each time. Significant group differences were found only for
Nonword Rhyming at Time 1 (F(2,19)=9.80, p=.001) and Time 2
(F(2,19)=3.87,p=.04). Post hoc analyses indicated that at Time1, Low
readers were less accurate than Average (p=.012) and High (p=.001)
readers with no differences found between the latter two groups
(p=.86). At Time 2, Low readers were less accurate than Average



Table 2
Accuracy rates for the ERP tasks by task, time, and reading subgroup.

ERP task Time 1 Time 2

M (SD) M (SD)

Letter Sound Matching
Low (n=10) 0.82 (0.14) 0.91 (0.10)
Average (n=8) 0.80 (0.10) 0.94 (0.04)
High (n=8) 0.85 (0.10) 0.80 (0.35)

Nonword Rhyming
Low (n=7) 0.60 (0.13) 0.79 (0.12)
Average (n=8) 0.79 (0.09) 0.93 (0.03)
High (n=7) 0.85 (0.12) 0.90 (0.13)

Nonword Reading
Low (n=10) 0.66 (0.17) 0.82 (0.22)
Average (n=5) 0.75 (0.17) 0.99 (0.01)
High (n=7) 0.80 (0.16) 0.91 (0.15)
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(p=.044) readers; no statistically significant differences were found
when comparing the remaining groups. Additionally, CBM scores at
Time 2 were correlated with reading change (i.e., CBM difference): .80
(Nonword Reading and Rhyming) and .90 (Letter Sound Matching).
3.2. ERP results

3.2.1. Letter Sound Matching
Data from 3 participants (1 female, 2 males) were excluded due to

an excessive number of artifacts in the ERP data (at least one condition
had less than 10 clean trials). For the remaining 26 participants,
numbers of artifact-free trials were comparable across stimulus
conditions (M same=26.54+/−6.97; M different=26.46+/−7.42
trials). This number of trials is consistent with the typical trial
retention in ERP studies with children where averages are based on
15–20 trials (e.g., Bernal et al., 2000; Khan, Frisk, & Taylor, 1999; Silva-
Pereyra et al., 2003). There were no reading group differences in the
number of trials retained for analysis (pN .05). Furthermore, the
Fig. 1. Electrode clusters identified by sPC
number of retained trials did not correlate with the behavioral
accuracy or CBM scores (p'sN .10).

The sPCA resulted in 5 factors accounting for 80.35% of the total
variance. These factors corresponded to 7 electrode clusters (see Fig. 1)
that included 98 of 124 electrodes (79% of the net). The tPCA resulted in
5 factors that accounted for 80.87% of the total variance. These factors
divided the waveform into intervals corresponding to 0–88 ms (Factor
4), 104–232 ms (Factor 2), 240–344 ms (Factor 3), 368–416 ms (Factor
5), and 408–600 ms (Factor 1). At Time 1, a statistically significant
reading group x electrode cluster x condition effect was found only for
the interval latest in temporal sequence (408–600 ms; F(12,138)=
3.285, p=.005, partial eta squared=.222). A one-way ANOVA with
reading group as the between-subject factor and the difference in the
refined factor scores for the same-different conditions as the dependent
variable was used to identify the electrode cluster at which ERP
responses differed as a functionof reading. Statistically significant group
effects were found at the frontal cluster (F (2,23)=8.628, p=.002,
partial eta squared=.429) and posterior cluster (F (2,23)=4.575,
p=.021, partial eta squared=.285).

Therefore, Time 1 ERP responses to the same conditions for these
two effects (i.e., those occurring latest in time over frontal and posterior
scalp locations) were selected as putative predictors of reading change.
Intercorrelations between behavioral measures (segmentation, rapid
letter naming, CBM at Times 1 and 2, reading change) and ERP
predictors (posterior and anterior ERPs at Time 1) are presented in
Table 3. Time 1 late ERPs for the same condition over the posterior scalp
electrode cluster (See Fig. 2) were correlated with reading change
(r=.481, p=.013). When these Time 1 ERPs were regressed onto
reading change while controlling for Time 1 accuracy, ERPs were a
significant contributor to predicting reading change (R2 change=.222;
F(1,23)=6.683, p=.017).

Contributions of the posterior ERPs at Time 1 to the prediction of
reading change remained significant after controlling for each of two
commonly used behavioral predictors of reading change: (a) Time 1
Rapid Letter Naming scores (R2change=.17; t(23)=2.53, p=.019)
and (b) Segmentation scores (R2change =.25; t(23)=2.866, p=.009).
A for the Letter Sound Matching task.



Fig. 2. Time 1 late ERPs for the same condition of the Letter Sound Matching task over
the posterior scalp electrode cluster for children with low- and high-reading changes.
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The correlation between the late ERP variable at the frontal cluster and
reading change was not significant (r=−.325, p=.105).

Additionally, we examined the stability of the late occurring ERP to
letter comparison at the posterior cluster over time (14 weeks), by
calculating the intra-class correlation (ICC) for this variable between
Time 1 and Time 2 (ICC=.612, pb .001; confidence interval
min=.301, max=.805). This degree of stability compares favorably
to the stability of ERP variables reported in the extant literature.

3.2.2. Nonword rhyming
Data from 7 participants (4 females, 3 males) on this measure were

excluded due to excessive noise in the ERP data. For the remaining 22
children,numbers of artifact-free trialswere comparable across stimulus
conditions (M same=19.09+/−1.19; M different=20.50+/−2.97
trials). The sPCA resulted in 7 factors accounting for 81.98% of the total
variance. These factors corresponded to 8 electrode clusters that
included 89 of 124 electrodes (72% of the net). The tPCA focused on
the 100–600 ms post-stimulus interval resulted in 5 factors that
accounted for 90.857% of the total variance. These factors divided the
waveform into intervals corresponding to 100–144 ms (Factor 5),
152–256 ms (Factor 2), 280–328 ms (Factor 4), 336–472ms (Factor 3),
and 448–600ms (Factor 1). No statistically significant effects (pb .05)
were obtained involving reading group×condition variables. Therefore,
putative predictors of reading change were not evaluated.

3.2.3. Nonword reading
Data from 7 participants (4 females, 3 males) were excluded due to

excessive noise. For the remaining 22 children, numbers of artifact-free
trials were comparable across stimulus conditions (M same=19.45+/−
2.18;M different=19.73+/−1.58 trials). The sPCA resulted in 7 factors
accounting for 79.50% of the total variance. These factors corresponded to
7 electrode clusters that included 77 of 124 electrodes (62% of the net).
The tPCA resulted in 5 factors that accounted for 83.35% of the total
variance. These factors divided thewaveform into intervals corresponding
to0–64 ms(Factor5), 80–176 ms(Factor4), 184–312 ms(Factor3), 312–
464 ms (Factor 1), and 464–600 ms (Factor 2). A statistically significant
reading group×condition interaction (F(2,19)=7.436, p=.004, partial
eta squared=.439) occurred for the late component (464–670 ms). A
one-way ANOVA with reading group as the between-subject factor and
condition difference (different–same) as the dependent variable resulted
in a marginally statistically significant effect (F(2,21)=3.419, p=.054,
partial eta squared=.265). Time 1 ERPs for the same condition at this
time period did not correlate with the change in reading (r=.278,
p=.211). Due to this lack of correlation, further regression analyses were
not conducted.

4. Discussion

The purpose of this study was to determine if the ERP data from
three reading-related tasks could be used to predict short-term
reading change. We hypothesized that Time 1 ERP responses to all
Table 3
Intercorrelations among behavioral measures and ERP predictors for Letter Sound
Matching task.

Variable 1 2 3 4 5 6 7

1. RLN –

2. Segmentation −.04 –

3. Time 1 CBM .54 .18 –

4. Time 2 CBM .56 .22 .92 –

5. Reading Change .47 .21 .67 .91 –

6. Posterior ERP Time 1 Match .16 −.09 .27 .41 .48 –

7. Anterior ERP Time 1 Match −.35 .02 −.30 −.34 −.33 −.77 –

Note. Correlations above .39 were significant at pb .05, above .50 were significant at
pb .01, and above .61 were significant at pb .001 (two-tailed). RLN=Rapid Letter
Naming. CBM=Curriculum-Based Measurement.
three tasks would be correlated with reading change over 19 weeks.
Results indicated that late ERP responses to the Letter SoundMatching
task over posterior sites were reliably predictive.

The late temporal window where we found the predictive effects
in the letter-sound matching task may be viewed by some as delayed
compared to findings from other ERP studies of reading. Previous
research has typically identified differences earlier in the wave and
attributed them to alterations in sensory processing (e.g., N1–P2
effects of Molfese et al. (2007)) or in integration of immediate context
(e.g., N2/N400 effects in priming/sentence reading tasks–McPherson
et al., 1996; Brandeis, Vitacco & Steinhausen, 1994; Neville, Coffey,
Holcomb, & Tallal, 1993). In the current study, the predictive effect
occurs in the 400–600 ms window where higher positive amplitudes
were observed for children with better reading scores at Time 2. This
effect overlaps in time and space with the memory-related effects
observed in previous studies of recognition and recall in adults (e.g.,
Wilding & Rugg, 1997; Donaldson & Rugg, 1998) and suggests that
early reading acquisition may depend heavily on the ability to recall
specific information, such as letter–sound associations, rather than
merely recognizing familiar pairings among distracters.

Furthermore, ERP responses on Letter Sound Matching remained a
statistically significant predictor after controlling for two well-
regarded reading measures, Rapid Letter Naming and Segmenting.
In other words, ERP had a value added in predicting which students
would and would not demonstrate reading growth. The Nonword
Rhyming and Nonword Reading tasks were not predictive of short-
term reading change in our sample.

4.1. Importance of the study

We believe these findings extend prior related work in several
ways. First, we demonstrated that an ERP reading task, Letter Sound
Matching, can help predict short-term reading change, and that the
ERP responses provided predictive information beyond that of two
well-regarded, commonly used behavioral measures. In prior studies,
by contrast, researchers have used ERPs to make successful long-term
(i.e., 5 to 8 year) predictions of reading performance (Lyytinen, et al.,
2005; Molfese, et al., 2007). Whereas long-term predictions can have
theoretical and practical importance, their accuracy may decrease as
more intensive interventions are provided to at-risk students.
Additionally, teachers and administrators typically must determine
students' instructional needs in the here and now (i.e., during the
current academic year), and therefore would benefit from measures
sensitive to ongoing changes in student performance. Thus, accurate
short-term predictions are necessary.

Second, results demonstrate the importance of task design. We
developed our three tasks to be closely related to critical first-grade
reading skills and to be aligned with validated behavioral measures.
However, ERP responses to the Nonword Rhyming task—the task that
seems to reflect the early reading skill of phonological awareness—were
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not predictive of short-termreading change. Similarly,wedidnot obtain
statistically significant predictions of change by using the Nonword
Reading task, which seems most closely related to our word
identification fluency outcome. Thus, our findings suggest that merely
“translating” behavioral measures into psycho-physiological tasks may
not always be fruitful. The most likely explanation for why these two
tasks did not predict reading change is that they were too difficult at
Time 1 (behavioral data indicate substantial improvement in perfor-
mance at Time 2) and thus did not provide the neededmeasure of brain
processes associated with these skills.

By contrast, the task with greatest predictive utility (e.g., Letter
Sound Matching) was the one on which most students did well at
Time 1. Similarly, researchers in prior studies in which ERP tasks have
successfully differentiated group performance, or predicted behav-
ioral outcomes, have reported high levels of behavioral accuracy,
ranging from 87% to 97% (c.f., Penolazzi, et al., 2006; Yang, Perfetti, &
Schmalhofer, 2007). Thus, an easier ERP taskmay bemore informative
about future outcomes than a more difficult one.

In terms of RTI, we have provided an “outside-the-box” example of
how to think about predicting short-term reading change because we
believe that current approaches are neither sufficiently effective nor
efficient.Which is to say, we believewe and others can dobetter. Hence,
we are obligated to continue exploring supplemental or alternative
approaches. Our findings, however preliminary, suggest that cognitive
neuroscience techniques like ERP may be one such approach.
4.2. Study limitations

Before discussing future research directions, we would like to note
several limitations of the current study. First, we wish to highlight the
difference between predicting change and predicting response to
intervention (see Yoder & Compton, 2004). This study was not an
evaluation of an RTI model, and the “response” used as an outcome
variable was change in reading score that may or may not have been
due to the instruction each child received. Indeed, we have little
understanding of the nature of instruction directed at our 29 children
in their regular classrooms. Had we greater understanding of this
instruction, we would still have cause to be skeptical because
interpreting predictors of change within the treatment group as
reflecting response to treatment is tantamount to claiming that all
change is due to treatment. This is probably not so.

Furthermore, it is likely that the predictive utility of ERP tasks (and
behavioral assessments) will change depending upon the amount and
quality of instruction provided. Similarly, the selection of outcome
variablemay change the predictive utility of ERP tasks. In other words,
our Nonword Reading and Nonword Rhyming tasks may have
resulted in statistically significant predictions if a measure other
than CBM was selected as the outcome variable.

Some readers maywonder about the quality of data averaged across
26 trials per condition. First, this numberof trials ismore typical thannot
for ERP studies involving young children (cf. Taylor & Keenan, 1990).
Second, an insufficient number of trials would produce random, not
correlated, measurement error, making it more difficult to detect
significant differences (i.e., increasing type II, not type I, error). Put
differently, for this reason, we consider our study to be a conservative
test of ERP utility. Furthermore, the Time 2 ERP recoding provided for a
test–retest opportunity. The intra-class correlation between Time 1 and
Time 2 for the ERP variable reflected high stability, something unlikely
to occur if the data contained large amounts of noise. Nevertheless, a
replication study is needed to validate our findings.

Finally, our analysis represented just one of a vast array of possible
methods to identify relevant ERP variables. Had we identified these by
another method, results may have been different. We emphasize that
this was a pilot study with relatively few participants and that
replication is necessary before conclusions may be made regarding
the predictive value of these tasks or the related ERP components for
other students and outcome measures.

4.3. Future directions

This study has provided preliminary evidence that cognitive
neuroscience techniques like ERP may have practical application in
school settings. Although it is unlikely that we will soon leave “no
child unscanned,” it is likely that technological advances will
continue, increasing the likelihood that practitioners will have access
to techniques like ERP in the future. One can imagine that, in 10 to
20 years, schools may be using imaging technology to help efficiently
and effectively determine a most appropriate level of intervention for
children. It is possible that ERP tasks like the ones used in this study
could be used as alternate or supplemental methods to determine
which students need to quickly advance to the most intensive level of
instruction and which students do not need this level of intensity to
make academic progress. It is also likely that cognitive neuroscience
will continue to provide additional insights into the best ways to
remediate nonresponsive children by expanding our understanding of
the processing that underlies nonresponsiveness and the changes in
this processing that occur when effective interventions are provided.

In the field of learning disabilities, more researchers should focus on
the use of neuroscience approaches to understand processing differ-
ences between students who learn to read easily and thosewho do not.
This information likely will lead to the development of improved
behavioral assessments and academic interventions. Furthermore, as
the application of neuroscience techniques to educational research is
new, much work is needed in the development and replication of
effective, reliable ERP tasks, and a better understanding of what
cognitive processes are measured by which tasks (Barber & Kutas,
2007). Additionally, future studies should examine the predictive utility
of ERP tasks across a range of behavioral outcome measures to
determine which ERP tasks are most relevant to meaningful academic
growth.

Finally, researchers should continue examining the practical
application of neuroscience techniques into systems of identification
and intervention evaluation. This study was an initial exploration of
this type of work, but more is needed. Future studies could be
conducted in which validated neuroscience screening methods could
be used to index student responsiveness in an RTI framework and to
evaluate whether efficiency and accuracy of the model is enhanced
with these methods. Similarly, this type of technology could be used
to evaluate brain-based changes that occur due to specific interven-
tions. Cognitive neuroscience techniques, like ERP, are likely to
expand our current understanding of learning disabilities and best
ways to address the needs of academically vulnerable students. We
encourage greater collaboration between educational researchers and
cognitive neuroscientists to further this exploration.
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